Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Chem Biol Drug Des ; 103(4): e14513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570322

RESUMO

Taxol (paclitaxel) is the first approved microtubule-stabilizing agent (MSA) by binding stoichiometrically to tubulin, which is considered to be one of the most significant advances in first-line chemotherapy against diverse tumors. However, a large number of residue missence mutations harboring in the tubulin have been observed to cause acquired drug resistance, largely limiting the clinical application of Taxol and its analogs in chemotherapy. A systematic investigation of the intermolecular interactions between the Taxol and various tubulin mutants would help to establish a comprehensive picture of drug response to tubulin mutations in clinical treatment of cancer, and to design new MSA agents with high potency and selectivity to overcome drug resistance. In this study, we described an integration of in silico analysis and in vitro assay (iSiV) to profile Taxol against a panel of 149 clinically observed, cancer-associated missence mutations in ß-tubulin at molecular and cellular levels, aiming to a systematic understanding of molecular mechanism and biological implication underlying drug resistance and sensitivity conferring from tubulin mutations. It is revealed that the Taxol-resistant mutations can be classified into three types: (I) nonbonded interaction broken due to mutation, (II) steric hindrance caused by mutation, and (III) conformational change upon mutation. In addition, we identified three new Taxol-resistant mutations (C239Y, T274I, and R320P) that can largely reduce the binding affinity of Taxol to tubulin at molecular level, in which the T274I and R320P were observed to considerably impair the antitumor activity of Taxol at cellular level. Moreover, a novel drug-susceptible mutation (M363T) was also identified, which improves Taxol affinity by 2.6-fold and decreases Taxol antitumor EC50 values from 29.4 to 18.7 µM.


Assuntos
Paclitaxel , Tubulina (Proteína) , Paclitaxel/farmacologia , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Mutação , Resistência a Medicamentos
2.
Mitochondrial DNA B Resour ; 9(3): 352-356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487811

RESUMO

Tragopogon dubius Scopoli is native to Europe and western Asia and is considered an invasive plant in China. In this study, the complete chloroplast genome of T. dubius was obtained using high-throughput next-generation sequencing technology. The whole chloroplast genome was 153,017 bp long with a GC content of 38% and comprised 130 genes (86 protein-coding genes, 36 tRNA genes, and 8 rRNA genes). Phylogenetic analysis based on the concatenated chloroplast protein-coding sequences showed that T. dubius is most closely related to Tragopogon pratensis. This study provides valuable genetic data for further phylogenetic analysis and molecular identification of species in the genus Tragopogon.

3.
Environ Res ; 251(Pt 2): 118778, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38527721

RESUMO

Copper contaminant generated from mining and industrial smelting poses potential risks to human health. Biochar, as a low-energy and cost-effective biomaterial, holds value in Cu remediation. Spectral Induced Polarization (SIP) technique is employed in this study to monitor the Cu remediation processes of by biochar in column experiments. Cation exchange at low Cu2+ concentrations and surface complexation at high Cu2+ concentrations are identified as the major mechanisms for copper retention on biochar. The normalized chargeability (mn) from SIP signals linearly decreased (R2 = 0.776) with copper retention under 60 mg/L Cu influent; while mn linearly increases (R2 = 0.907, 0.852) under high 300 and 700 mg/L Cu influents. The characteristic polarizing unit sizes (primarily the pores adsorbing Cu2+) calculated from Schwartz equation match well with experimental results by mercury intrusion porosimetry (MIP). It is revealed that Cu2+ was driven to small pores (∼3 µm) given high concentration gradient (influent Cu2+ concentration of 700 mg/L). Comparing to activated carbon, biochar is identified as an ideal adsorbent for Cu remediation, given its high adsorption capacity, cost-effectiveness, carbon-sink ability, and high sensitivity to SIP responses - the latter facilitates its performance assessment.

4.
Nanomaterials (Basel) ; 14(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535667

RESUMO

Serotonin-based nanomaterials have been positioned as promising contenders for constructing multifunctional biomedical nanoplatforms due to notable biocompatibility, advantageous charge properties, and chemical adaptability. The elaborately designed structure and morphology are significant for their applications as functional carriers. In this study, we fabricated anisotropic bowl-like mesoporous polyserotonin (PST) nanoparticles with a diameter of approximately 170 nm through nano-emulsion polymerization, employing P123/F127 as a dual-soft template and 1,3,5-trimethylbenzene (TMB) as both pore expander and emulsion template. Their formation can be attributed to the synchronized assembly of P123/F127/TMB, along with the concurrent manifestation of anisotropic nucleation and growth on the TMB emulsion droplet surface. Meanwhile, the morphology of PST nanoparticles can be regulated from sphere- to bowl-like, with a particle size distribution ranging from 432 nm to 100 nm, experiencing a transformation from a dendritic, cylindrical open mesoporous structure to an approximately non-porous structure by altering the reaction parameters. The well-defined mesopores, intrinsic asymmetry, and pH-dependent charge reversal characteristics enable the as-prepared mesoporous bowl-like PST nanoparticles' potential for constructing responsive biomedical nanomotors through incorporating some catalytic functional materials, 3.5 nm CeO2 nanoenzymes, as a demonstration. The constructed nanomotors demonstrate remarkable autonomous movement capabilities under physiological H2O2 concentrations, even at an extremely low concentration of 0.05 mM, showcasing the 51.58 body length/s velocity. Furthermore, they can also respond to physiological pH values ranging from 4.4 to 7.4, exhibiting reduced mobility with increasing pH. This charge reversal-based responsive nanomotor design utilizing PST nanoparticles holds great promise for advancing the application of nanomotors within complex biological systems.

6.
Neural Netw ; 174: 106232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490116

RESUMO

Semantic segmentation is one of the directions in image research. It aims to obtain the contours of objects of interest, facilitating subsequent engineering tasks such as measurement and feature selection. However, existing segmentation methods still lack precision in class edge, particularly in multi-class mixed region. To this end, we present the Feature Enhancement Network (FE-Net), a novel approach that leverages edge label and pixel-wise weights to enhance segmentation performance in complex backgrounds. Firstly, we propose a Smart Edge Head (SE-Head) to process shallow-level information from the backbone network. It is combined with the FCN-Head and SepASPP-Head, located at deeper layers, to form a transitional structure where the loss weights gradually transition from edge labels to semantic labels and a mixed loss is also designed to support this structure. Additionally, we propose a pixel-wise weight evaluation method, a pixel-wise weight block, and a feature enhancement loss to improve training effectiveness in multi-class regions. FE-Net achieves significant performance improvements over baselines on publicly datasets Pascal VOC2012, SBD, and ATR, with best mIoU enhancements of 15.19%, 1.42% and 3.51%, respectively. Furthermore, experiments conducted on Pole&Hole match dataset from our laboratory environment demonstrate the superior effectiveness of FE-Net in segmenting defined key pixels.


Assuntos
Engenharia , Semântica , Processamento de Imagem Assistida por Computador
7.
Inorg Chem ; 63(7): 3402-3410, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38330908

RESUMO

An efficient synthesis of 3-pyrrolylBODIPY dyes has been developed from a rational mixture of various aromatic aldehydes and pyrrole in a straightforward condensation reaction, followed by in situ successively oxidative nucleophilic substitution using a one-pot strategy. These resultant 3-pyrrolylBODIPYs without blocking substituents not only exhibit the finely tunable photophysical properties induced by the flexible meso-aryl substituents but also serve as a valuable synthetic framework for further selective functionalization. As a proof of such potential, one 3-pyrrolylBODIPY dye (581/603 nm) through the installation of the morpholine group is applicable for lysosome-targeting imaging. Furthermore, an ethene-bridged 3,3'-dipyrrolylBODIPY dimer was constructed, which displayed a near-infrared (NIR) emission extended to 1200 nm with a large fluorescence brightness (2840 M-1 cm-1). The corresponding dimer nanoparticles (NPs) afforded a high photothermal conversion efficiency (PCE) value of 72.5%, eventually resulting in favorable photocytotoxicity (IC50 = 9.4 µM) and efficient in vitro eradication of HeLa cells under 808 nm laser irradiation, highlighting their potential application for photothermal therapy in the NIR window.


Assuntos
Corantes , Nanopartículas , Humanos , Células HeLa , Compostos de Boro/farmacologia , Imagem Óptica , Polímeros
8.
Poult Sci ; 103(3): 103344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277892

RESUMO

Protein arginine methyltransferase 5 (PRMT5), a type II arginine methyltransferase, controls arginine dimethylation of a variety of substrates. While many papers have reported the function of mammalian PRMT5, it remains unclear how PRMT5 functions in chicken cells. In this study, we found that chicken (ch) PRMT5 is widely expressed in a variety of chicken tissues and is distributed in both the cytoplasm and the nucleus. Ectopic expression of chPRMT5 significantly suppresses chIFN-ß activation induced by chMDA5. In addition, a prmt5 gene-deficient DF-1 cell line was constructed using CRISPR/Cas9. In comparison with the wild-type cells, the prmt5-/- DF-1 cells displays normal morphology and maintain proliferative capacity. Luciferase reporter assay and overexpression showed that prmt5-/- DF-1 cells had increased IFN-ß production. With identified chicken PRMT5 and CRISPR/Cas9 knockout performed in DF-1 cells, we uncovered a functional link of chPRMT5 in suppression of IFN-ß production and interferon-stimulated gene expression.


Assuntos
Galinhas , Interferons , Animais , Interferons/metabolismo , Galinhas/genética , Galinhas/metabolismo , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes/veterinária , Linhagem Celular , Mamíferos/metabolismo
9.
Cell Commun Signal ; 22(1): 17, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183022

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells participated in the development of retinal fibrosis. SB431542 is a small molecule inhibitor with inhibitory effects on the ALK4, ALK5 and ALK7. Our study aimed to explore the effect of SB431542 on the EMT of RPE cells and to provide new ideas for the treatment of retinal fibrosis. METHODS: We performed fundus fluorescein angiography, optical coherence tomography and hematoxylin-eosin staining in vivo to observe the effect of SB431542 on choroidal neovascularization (CNV)-induced retinopathy. The proliferation, migration, cytoskeleton, adhesion, reactive oxygen species (ROS), mitochondrial morphology and membrane potential of RPE cells were observed in vitro through fluorescein diacetate staining, Cell Counting Kit-8 experiment, wound healing assay, phalloidin staining, immunofluorescence, MitoSOX, DCFH-DA, MitoTracker and JC-10 staining. Western blot, reverse transcription quantitative and immunofluorescence were used to detect the expression of EMT-related markers, pERK1/2, pGSK3ß and ß-catenin. RESULTS: SB431542 significantly alleviated retinopathy in the CNV model. The proliferation, migration and adhesion in RPE cells decreased to a certain extent in SB431542 treatment. SB431542 partially normalized the structure of RPE cells. The expression levels of E-cadherin increased, while the expression levels of laminin and N-cadherin decreased with SB431542 treatment. SB431542 reduced the production of total ROS, mitochondrial SOX and recovered the mitochondrial membrane potential to a certain degree. In addition, our study showed that SB431542 downregulated the phosphorylation of ERK1/2, GSK3ß and the expression of ß-catenin. CONCLUSION: SB431542 improved EMT in RPE cells by maintaining mitochondrial homeostasis via the ERK1/2 and GSK3ß/ß-catenin pathways. Video Abstract SB431542 inhibits EMT in RPE cells under high glucose conditions.


Assuntos
Neovascularização de Coroide , Doenças Retinianas , Humanos , beta Catenina , Glicogênio Sintase Quinase 3 beta , Espécies Reativas de Oxigênio , Homeostase , Fibrose , Glucose/toxicidade
10.
Trends Ecol Evol ; 39(1): 78-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37777374

RESUMO

Plant roots show extraordinary diversity in form and function in heterogeneous environments. Mounting evidence has shown global bi-dimensionality in root traits, the root economics spectrum (RES), and an orthogonal dimension describing mycorrhizal collaboration; however, the origin of the bi-dimensionality remains unresolved. Here, we propose that bi-dimensionality arises from the cylindrical geometry of roots, allometry between root cortex and stele, and independence between root cell wall thickness and cell number. Root geometry and mycorrhizal collaboration may both underlie the bi-dimensionality. Further, we emphasize why plant roots should be cylindrical rather than flat. Finally, we highlight the need to integrate organ-, cellular-, and molecular-level processes driving the bi-dimensionality in plant roots to fully understand plant diversity and functions.


Assuntos
Micorrizas , Raízes de Plantas , Plantas , Fenótipo
12.
J Immunother Cancer ; 11(11)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38007239

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent and durable effects in B-cell malignancies. However, antigen loss or downregulation is a frequent cause of resistance. Here, we report development of a novel CAR T-cell therapy product to target CD79b, a pan B-cell antigen, widely expressed in most B-cell lymphomas. METHODS: We generated a novel anti-CD79b monoclonal antibody by hybridoma method. The specificity of the antibody was determined by testing against isogenic cell lines with human CD79b knock-in or knock-out. A single-chain variable fragment derived from the monoclonal antibody was used to make a panel of CD79b-targeting CAR molecules containing various hinge, transmembrane, and co-stimulatory domains. These were lentivirally transduced into primary T cells and tested for antitumor activity in in vitro and in vivo B-cell lymphoma models. RESULTS: We found that the novel anti-CD79b monoclonal antibody was highly specific and bound only to human CD79b and no other cell surface protein. In testing the various CD79b-targeting CAR molecules, superior antitumor efficacy in vitro and in vivo was found for a CAR consisting CD8α hinge and transmembrane domains, an OX40 co-stimulatory domain, and a CD3ζ signaling domain. This CD79b CAR specifically recognized human CD79b-expressing lymphoma cell lines but not CD79b knock-out cell lines. CD79b CAR T cells, generated from T cells from either healthy donors or patients with lymphoma, proliferated, produced cytokines, degranulated, and exhibited robust cytotoxic activity in vitro against CD19+ and CD19- lymphoma cell lines and patient-derived lymphoma tumors relapsing after prior CD19 CAR T-cell therapy. Furthermore, CD79b CAR T cells were highly efficient at eradicating pre-established lymphoma tumors in vivo in three aggressive lymphoma xenograft models, including two cell line-derived xenografts and one patient-derived xenograft. Notably, these CAR T cells did not demonstrate any significant tonic signaling activity or markers of exhaustion. CONCLUSION: Our results indicated that this novel CD79b CAR T-cell therapy product has robust antitumor activity against B-cell lymphomas. These results supported initiation of a phase 1 clinical trial to evaluate this product in patients with relapsed or refractory B-cell lymphomas.


Assuntos
Linfoma de Células B , Receptores de Antígenos Quiméricos , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Linfócitos T , Anticorpos Monoclonais/metabolismo
13.
Front Plant Sci ; 14: 1281931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920722

RESUMO

Propyrisulfuron is a novel pyrimidinylsulfonylurea herbicide with good activity for controlling annual weed in rice fields. To evaluate the economic performance of propyrisulfuron, a field study was conducted in 2021 and 2022 on a farm of the Jiangsu Academy of Agricultural Sciences, China. Eight different herbicide treatments were employed, including CB (cyhalofop butyl), Py (propyrisulfuron), CBPy (cyhalofop butyl plus propyrisulfuron), PrBe 3, PrBe 10, and PrBe 3+PrBe 10 (pretilachlor plus bensulfuron applied at different times [at 3 (PrBe 3) and 10 (PrBe 10) d] or sequentially, respectively), 2PrBe+PeCBBz (pretilachlor plus bensulfuron [applied sequentially] followed by penoxsulam plus cyhalofop butyl plus bentazone), 2PrBe+MeCBBz (pretilachlor plus bensulfuron [applied sequentially] followed by metamifop plus cyhalofop butyl plus bentazone), along with weed-free and nontreated weedy check treatments. Herbicide treatments did not cause visual phytotoxicity to rice, and bending and leaf rolling were not observed. Only the two propyrisulfuron treatments had temporary negative effects on rice height, but rice recovered quickly. Compared with the weed-free treatment, CBPy did not affect rice tiller number or dry matter accumulation. Compared with the nontreated weedy check, herbicide treatments reduced total weed density by 29.4% to 99.1% and dry biomass by 32.2% to 98.7%. The CBPy treatment provided the best weed control, reducing weed density and biomass by 96.7% and 95.9% in 2021 and 97.4% and 95.6% in 2022, respectively. Rice grain yield was not significantly different between CBPy and the weed-free treatment in either year. Economic analysis showed that CBPy provided the highest net profit, followed by that in 2PrBe+PeCBBz and 2PrBe+MeCBBz, with the lowest net profit in the nontreated weedy check. Thus, CBPy provides good weed control and could be promoted in mechanically transplanted rice fields in China.

14.
Fish Shellfish Immunol ; 143: 109133, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923185

RESUMO

Edwardsiella tarda (E. tarda), an intracellular pathogen, has caused severe economic losses in aquaculture. Effective vaccine development for E. tarda prevention is urgently needed. A previous study indicates that cell-mediated immunity (CMI) might play an important role in E. tarda infection. We believe that the involvement of allograft rejection and CMI has now been well documented in mammals and some fishes. However, there is still little research on the application of blood allograft rejection in vaccine development. In the current study, we investigate the immune response and vaccine effect in fish vaccinated with allogeneic blood + formalin-killed cells vaccine (FKC), allogeneic blood + phosphate-buffered saline (PBS), PBS + FKC and PBS + PBS. In the challenge test, the relative percentage survival (RPS) of the allogeneic + FKC, the allogeneic blood + PBS and the PBS + FKC group was 61.46, 35.41, and 30.63 % respectively. The up-regulated expression of Th1-related genes IFN-γ 1, IFN-γ 1rel2, IL-12p35 and T-bet suggests the protection is via CMI induction. Only in the allogeneic + FKC group, gene expression of IFN-γ 1, IL-12p35 and T-bet is significantly higher, indicating synergy between the two substances. Furthermore, among the fish injected with the allogeneic blood cells, syngeneic blood cells and PBS group, only in the fish of the allogenic blood cells injection group, did expression of IFN-γ 1, IFN-γ 2 and IFN-γ rel2 gene expression significantly increased. The results indicate that the rejection was induced by allogeneic components. Thus, our findings might provide essential information and insights into vaccine development in aquaculture.


Assuntos
Carpas , Infecções por Enterobacteriaceae , Doenças dos Peixes , Transplante de Células-Tronco Hematopoéticas , Animais , Carpa Dourada , Subunidade p35 da Interleucina-12 , Adjuvantes Imunológicos , Vacinas de Produtos Inativados , Doenças dos Peixes/prevenção & controle , Vacinas Bacterianas , Edwardsiella tarda , Mamíferos
15.
Immun Inflamm Dis ; 11(10): e1034, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37904703

RESUMO

Heat stroke is a life-threatening disease with high mortality and complications. Endothelial glycocalyx (EGCX) is essential for maintaining endothelial cell structure and function as well as preventing the adhesion of inflammatory cells. Potential relationship that underlies the imbalance in inflammation and coagulation remains elusive. Moreover, the role of EGCX in heat stroke-induced organ injury remained unclear. Therefore, the current study aimed to illustrate if EGCX aggravates apoptosis, inflammation, and oxidative damage in human pulmonary microvascular endothelial cells (HPMEC). Heat stress and lipopolysaccharide (LPS) were employed to construct in vitro models to study the changes of glycocalyx structure and function, as well as levels of heparansulfate proteoglycan (HSPG), syndecan-1 (SDC-1), heparansulfate (HS), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, Von Willebrand factor (vWF), endothelin-1 (ET-1), occludin, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and reactive oxygen species (ROS). Here, we showed that heat stress and LPS devastated EGCX structure, activated EGCX degradation, and triggered oxidative damage and apoptosis in HPMEC. Stimulation of heat stress and LPS decreased expression of HSPG, increased levels of SDC-1 and HS in culture supernatant, promoted the production and release of proinflammation cytokines (TNF-α and IL-6,) and coagulative factors (vWF and ET-1) in HPMEC. Furthermore, Expressions of E-selection, VCAM-1, and ROS were upregulated, while that of occludin was downregulated. These changes could be deteriorated by heparanase, whereas they meliorated by unfractionated heparin. This study indicated that EGCX may contribute to apoptosis and heat stroke-induced coagulopathy, and these effects may have been due to the decrease in the shedding of EGCX.


Assuntos
Células Endoteliais , Golpe de Calor , Humanos , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Heparina/metabolismo , Heparina/farmacologia , Fator de von Willebrand/metabolismo , Fator de von Willebrand/farmacologia , Proteoglicanas de Heparan Sulfato/metabolismo , Proteoglicanas de Heparan Sulfato/farmacologia , Ocludina/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/farmacologia , Inflamação/metabolismo , Interleucina-6/farmacologia , Golpe de Calor/metabolismo , Resposta ao Choque Térmico
16.
BMC Anesthesiol ; 23(1): 350, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880585

RESUMO

BACKGROUND: The anatomical characteristics of difficult airways can be analysed geometrically. This study aims to develop and validate a geometry-assisted difficult airway screening method (GADAS method) for difficult tracheal intubation. METHODS: In the GADAS method, a geometric simulated model was established based on computer graphics. According to the law of deformation of the upper airway on laryngoscopy, the expected visibility of the glottis was calculated to simulate the real visibility on laryngoscopy. Validation of the new method: Approved by the Ethics Committee of Yijishan Hospital of Wannan Medical College. Adult patients who needed tracheal intubation under general anaesthesia for elective surgery were enrolled. The data of patients were input into the computer software to calculate the expected visibility of the glottis. The results of tracheal intubation were recorded by anaesthesiologists. The primary observation outcome was the screening performance of the expected visibility of the glottis for difficult tracheal intubation. RESULTS: The geometric model and software of the GADAS method were successfully developed and are available for use. We successfully observed 2068 patients, of whom 56 patients had difficult intubation. The area under the receiver operating characteristic curve of low expected glottis visibility for predicting difficult laryngoscopy was 0.96 (95% confidence interval [CI]: 0.95-0.96). The sensitivity and specificity were 89.3% (95% CI: 78.1-96.0%) and 94.3% (95% CI: 93.2%-95.3), respectively. CONCLUSIONS: It is feasible to screen difficult-airway patients by applying computer techniques to simulate geometric changes in the upper airway.


Assuntos
Laringoscopia , Laringe , Adulto , Humanos , Laringoscopia/métodos , Intubação Intratraqueal/métodos , Computadores , Tecnologia
17.
Blood Coagul Fibrinolysis ; 34(8): 465-470, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823419

RESUMO

Disseminated intravascular coagulation (DIC) is a complex disorder characterized by widespread activation of blood clotting mechanisms throughout the body. Understanding the role of vascular endothelial glycocalyx in the pathogenesis and treatment of DIC is crucial for advancing our knowledge in this field. The vascular endothelial glycocalyx is a gel-like layer that coats the inner surface of blood vessels. It plays a significant role in maintaining vascular integrity, regulating fluid balance, and preventing excessive clotting. In the pathogenesis of DIC, the disruption of the vascular endothelial glycocalyx is a key factor. Pathological conditions trigger the activation of enzymes, including heparanase, hyaluronase, and matrix metalloproteinase. This activation leads to glycocalyx degradation, subsequently exposing endothelial cells to procoagulant stimuli. Additionally, the ANGPTs/Tie-2 signaling pathway plays a role in the imbalance between the synthesis and degradation of VEG, exacerbating endothelial dysfunction and DIC. Understanding the mechanisms behind glycocalyx degradation and its impact on DIC can provide valuable insights for the development of targeted therapies. Preservation of the glycocalyx integrity may help prevent the initiation and propagation of DIC. Strategies such as administration of exogenous glycocalyx components, anticoagulant agents, or Tie-2 antibody agents have shown promising results in experimental models. In conclusion, the vascular endothelial glycocalyx plays a crucial role in the pathogenesis and treatment of DIC. Further research in this field is warranted to unravel the complex interactions between the glycocalyx and DIC, ultimately leading to the development of novel therapies.


Assuntos
Coagulação Intravascular Disseminada , Humanos , Coagulação Intravascular Disseminada/etiologia , Coagulação Intravascular Disseminada/terapia , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Anticoagulantes/uso terapêutico , Anticoagulantes/metabolismo , Coagulação Sanguínea
18.
Cell Mol Immunol ; 20(12): 1413-1427, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833401

RESUMO

Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disorder in which macrophages play a critical role. Mammalian sterile-20-like kinase 4 (MST4), a member of the germinal-center kinase STE20 family, has been demonstrated to be a regulator of inflammation. Whether MST4 participates in the macrophage-dependent inflammation of ITP remains elusive. The expression and function of MST4 in macrophages of ITP patients and THP-1 cells, and of a macrophage-specific Mst4-/- (Mst4ΔM/ΔM) ITP mouse model were determined. Macrophage phagocytic assays, RNA sequencing (RNA-seq) analysis, immunofluorescence analysis, coimmunoprecipitation (co-IP), mass spectrometry (MS), bioinformatics analysis, and phosphoproteomics analysis were performed to reveal the underlying mechanisms. The expression levels of the MST4 gene were elevated in the expanded M1-like macrophages of ITP patients, and this elevated expression of MST4 was restored to basal levels in patients with remission after high-dose dexamethasone treatment. The expression of the MST4 gene was significantly elevated in THP-1-derived M1 macrophages. Silencing of MST4 decreased the expression of M1 macrophage markers and cytokines, and impaired phagocytosis, which could be increased by overexpression of MST4. In a passive ITP mouse model, macrophage-specific depletion of Mst4 reduced the numbers of M1 macrophages in the spleen and peritoneal lavage fluid, attenuated the expression of M1 cytokines, and promoted the predominance of FcγRIIb in splenic macrophages, which resulted in amelioration of thrombocytopenia. Downregulation of MST4 directly inhibited STAT1 phosphorylation, which is essential for M1 polarization of macrophages. Our study elucidates a critical role for MST4 kinase in the pathology of ITP and identifies MST4 kinase as a potential therapeutic target for refractory ITP.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Animais , Camundongos , Humanos , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Macrófagos , Trombocitopenia/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Mamíferos/metabolismo , Fator de Transcrição STAT1/metabolismo
19.
J Virol ; 97(10): e0074723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37712706

RESUMO

IMPORTANCE: Respiratory syncytial virus (RSV) matrix (M) protein is indispensable for virion assembly and release. It is localized to the nucleus during early infection to perturb host transcription. However, the function of RSV M protein in other cellular activities remains poorly understood. In this study, several interferon response-associated host factors, including RACK1, were identified by proteomic analysis as RSV M interactors. Knockdown of RACK1 attenuates RSV-restricted IFN signaling leading to enhanced host defense against RSV infection, unraveling a role of M protein in antagonizing IFN response via association with RACK1. Our study uncovers a previously unrecognized mechanism of immune evasion by RSV M protein and identifies RACK1 as a novel host factor recruited by RSV, highlighting RACK1 as a potential new target for RSV therapeutics development.


Assuntos
Receptores de Quinase C Ativada , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Proteínas da Matriz Viral , Humanos , Interferons , Proteínas de Neoplasias/genética , Proteínas , Proteômica , Receptores de Quinase C Ativada/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Proteínas da Matriz Viral/metabolismo
20.
Environ Sci Pollut Res Int ; 30(48): 106549-106561, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730975

RESUMO

Benzo[a]pyrene (B[a]P), one typical environmental pollutant, the toxicity mechanisms, and potential prevention remain perplexing. Available evidence suggests cytochrome P450 1A1 (CYP1A1) and glutathione S-transferases (GSTs) metabolize B[a]P, resulting in metabolic activation and detoxification of B[a]P. This study aimed to reveal the impact of B[a]P exposure on trans-7,8-diol-anti-9,10-epoxide DNA (BPDE-DNA) adduct formation, level of CYP1A1, glutathione S-transferase pi (GSTP1) and glutathione S-transferase mu1 (GSTM1) mRNA, protein and DNA methylation in mice, and the potential prevention of aspirin (ASP). This study firstly determined the BPDE-DNA adduct formation in an acute toxicity test of a large dose in mice induced by B[a]P, which subsequently detected CYP1A1, GSTP1, and GSTM1 at levels of mRNA, protein, and DNA methylation in the organs of mice in a subacute toxicity test at appropriate doses and the potential prevention of ASP, using the methods of real-time quantitative PCR (QPCR), western blotting, and real-time methylation-specific PCR (MSP), respectively. The results verified that B[a]P induced the formation of BPDE-DNA adduct in all the organs of mice in an acute toxicity test, and the order of concentration of which was lung > kidney > liver > brain. In a subacute toxicity test, following B[a]P treatment, mice showed a dose-dependent slowdown in body weight gain and abnormalities in behavioral and cognitive function and which were alleviated by ASP co-treatment. Compared to the controls, following B[a]P treatment, CYP1A1 was significantly induced in all organs in mice at mRNA level (P < 0.05), was suppressed in the lung and cerebrum of mice at protein level, and inhibited at DNA methylation level in the liver, lung, and cerebrum, whereas GSTP1 and GSTM1 at mRNA, protein, and DNA methylation levels showed organ-specific changes in mice following B[a]P treatment, which was generally alleviated by ASP intervention. In conclusion, B[a]P induced BPDE-DNA adduct formation in all organs in mice and altered the mRNA, protein, and DNA methylation levels in CYP1A1, GSTP1, and GSTM1 in an organ-dependent pattern, which could be related to the organ toxicity and mechanism of B[a]P. ASP intervention may be an effective measure to prevent B[a]P toxicity. The findings provide scientific evidence for further study on the organ toxicity and mechanisms of B[a]P.


Assuntos
Citocromo P-450 CYP1A1 , Glutationa S-Transferase pi , Animais , Camundongos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Glutationa S-Transferase pi/genética , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Adutos de DNA , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Metilação de DNA , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Aspirina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...